logo

 Новости 

 Акустика 

 Электроника 

 Справочники 

 Программы 

 Ссылки 

 О себе 


www.yandex.ru

Усилитель на N-канальных полевиках.


Автор оригинальной схемы Alex Nikitin. Его усилителю посвящена ветка на форуме   Немного звукотехники.   К сожалению, использованные автором транзисторы сложно достать, но если внести в схему некоторые изменения можно использовать более доступные транзисторы. Огромная благодарность автору - Алексу Никитину и участникам форума, чьими творческими усилиями родился предложенный ниже вариант принципиальной схемы.

Принципиальная схема:

Принципиальная схема

  Крупное изображение принципиальной схемы  

Печатная плата усилителя:

Печатная плата усилителя

Монтажка:

Монтажка

Плата блока питания:

Плата блока питания

  Плата блока питания с двумя диодными мостами  

Некоторые рекомендации автора (Алекса Никитина) по настройке усилителя, взятые с форума.
  [Авторский вариант принципиальной схемы]  
Это переработанный вариант на основе схемы разработанного мной и уже давно снятого с производства усилителя Creek 4330 (выпуска примерно 1997 года) . Почти в точности такая схема у усилителя, который я и сейчас использую дома. Как видите, схема довольно простая с небольшим количеством деталей. Выходная мощность при питании +/- 35 Вольт примерно 40 Вт на 8 Омах, 65-70 Вт на 4 Ом. Не показаны на схеме цепи питания, в том числе питания ОУ ( +/-15В) . Основной блок питания может быть от +/-25 до +/-35 Вольт с ёмкостью сглаживающих конденсаторов от 6800 до 10000 мкФ на два канала, защищённый плавкими предохранителями на 3-4 А ("медленными", с буквой Т) на ВХОДЕ выпрямительного моста, то есть последовательно с каждой половиной вторичной обмотки трансформатора. Выходные транзисторы помещены на теплоотвод с тепловым сопротивлением не больше 1-1,5 градусов на Ватт, закреплены прижимом сверху алюминиевым блоком 10х10х45мм, изоляция ОБЯЗАТЕЛЬНО слюдяная с теплопроводящей смазкой с обеих сторон. Q9 должен иметь хороший тепловой контакт (со смазкой) с теплоотводом выходных транзисторов и лучше всего прямо между ними. Величина R15 определяет крутизну температурной компенсации и может быть слегка изменена для другого типа выходных транзисторов. Теплоотвод желательно заземлить. В целом рекомендую на выход поставить ещё последовательно цепь из резистора 3Вт 1 Ом параллельно с намотанными на него 10 витками эмалированного провода диаметром 1 мм. Это, в целом, обеспечит хорошую стабильность на реактивной нагрузке даже при не слишком удачной разводке.

К сожалению, выходные транзисторы ни на что заменять не рекомендую. Можно поставить HUF76633P3, но при этом лучше ограничить мощность 30 Ваттами на канал. ZVP3310 опять же нежелательно заменять, я так и не нашёл вполне полноценной замены. Это в целом. На полном безрыбье можно поставить IRF9610 вместо ZVP3310 и другие MOSFET-ы на выход - требования простые - низкое напряжение открывания ("logic level"), мощность рассеяния не меньше 120 Вт, максимальный ток не меньше 20-25А . Но любые замены выходных транзисторов могут повлиять на ряд параметров, в том числе на стабильность и на сопротивляемость короткому замыканию - показанный на схеме вариант при правильной сборке и разводке может выдержать КЗ на выходе вплоть до перегорания предохранителей в цепях вторичной обмотки трансформатора. Повторять это часто тем не менее не рекомендуется BC640 можно заменить на BD140 (только Филипс) . Опять же другие замены возможны, но так как я их не проверял, то рекомендовать не могу.

Выходной каскад (начиная с Q8) прекрасно работает и без ОООС, имеет низкое выходное сопротивлением (около 0,1 Ом) и искажения порядка 0,2% на 8 Ом нагрузки при токе покоя в 100 мА. При увеличении тока покоя искажения резко уменьшаются. Никакой асимметрии выходного сопротивления плеч здесь нет в силу местной петли ООС. Это хороший повторитель и без ОООС, поэтому он неплохо работает и при замкнутой петле, поскольку он не "опирается" на неё для достижения высокой линейности и низкого выходного сопротивления. Полюс тоже не очень низкий - если мне не изменяет память, искажения в этой схеме начинают расти где-то с 2-3 кГц. Естественно, более высокий полюс был бы лучше, но привёл бы к усложнению схемы. Также и насчёт класса АВ - за эти деньги получить 40 Вт в классе А было бы трудновато . Кстати, этот каскад при наличии хорошего теплоотвода и пониженного питания можно вполне сместить ближе к классу А. Интересное свойство этого выходного каскада - это симметричное ограничение по току, но для весьма больших значений - 30-35А в пике для показанных на схеме транзисторов.

Питание - тороидальный трансформатор на 120 Вт габаритных, 2 вторички по 25В, затем предохранители на 3 А (Т) , мост, с диодами шунтированными 10нФ (или Шоттки без шунтирования - это лучше) , и примерно 10000 мкФ сглаживающих конденсаторов (ставили 3 по 3300х35В в параллель в каждом плече). Питание общее для двух каналов.
Можно использовать обычные (не logic-level) полевые транзисторы типа IRFP240, но они потребуют существенного повышения тока через Р-канальный полевик и источник тока. Кроме этого, сильно увеличится падение напряжения на "верхнем" выходном транзисторе и для симметричного ограничения надо увеличивать напряжение питания источника тока. В качестве Р-канального транзистора и в источнике тока я применил IRF9610 на радиаторах, с током источника порядка 60 мА. Кроме этого, у "нормальных" полевиков с отсечкой в районе 3,5 Вольт другой температурный коэффициент напряжения отсечки, и надо компенсировать его по-другому. Я ставил в эмиттер транзистора-датчика температуры (на место R15 в обсуждаемой схеме) источник опорного напряжения на 1,2 В ("band-gap reference") - и температурная компенсация получалась практически точной. Короче говоря, применение не "logic level" транзисторов требует существенного изменения схемы. Уж лучше применить что-то типа IRL540/640 если HUF недоступны.

Я решил детально исследовать процессы, происходящие в выходном каскаде при КЗ и поставил эти два резистора (R21, R22) просто как токовые датчики, правда по 0,05 Ома. Когда я посмотрел в деталях, что происходит, оказалось, что иногда возникает очень кратковременная перегрузка нижнего транзистора по напряжению на затворе - "игла" напряжения, которая, как выяснилось и приводила к разрушению транзисторов в серийных аппаратах. Похоже, что это было связано с кратковременным самовозбуждением при КЗ. Резисторы полностью убрали возможность возникновения этого эффекта, плюс они принимают на себя основную мощность теплового удара при КЗ. Я довольно скоро выяснил, что при увеличенных до 0,33-0,47 Ом номиналах этих резисторов выходной каскад не сгорает при относительно длительном КЗ. Я сначала ставил 3-х ваттные проволочные, но они выдерживали не больше 2-3 тепловых ударов, потом перегорали. С 6-ваттными "Meggit" импульсная рассеиваемая мощность оказалась достаточна для многих циклов работы в таком режиме. После того, как мы начали ставить эти резисторы в выходной каскад, у нас практически сошли на полный ноль отказы выходного каскада в эксплуатации, которые до этого были хотя и невелики в процентном отношении, но регулярны, в основном как результат КЗ на выходе.

По поводу IRFP150N. Вкратце - их вполне можно применить, но потребуется изменение схемы - увеличение питающего напряжения для источника тока и УН, увеличение тока ИТ до 30-50 мА, замена R15 на ИОН 1,2В для корректной температурной компенсации тока покоя, соответствующее изменение R18, R20. С ними как раз придётся применить IRF9610, поскольку возрастёт рассеиваемая мощность. Полезно и Q10 заменить на такой же IRF9610 на радиаторе. Какие минусы в применении IRF9610 вместо ZETEXа кроме бОльших межэлектродных емкостей? В принципе, вроде, ничего существенного. Соответственно несколько увеличиваются требования к УН, но в целом такая замена работает.

Кроме возможных очевидных проблем (сервоканал не должен добавлять шумов и искажений, нормально реагировать на перегрузку УМ, в том числе и асимметричным сигналом, иметь достаточный диапазон регулировки и т.д.), полезно ещё настроить серво на слух под конкретные усилитель и блок питания - проще всего в обсуждаемой схеме путём замены R28 на переменник 47К (лучше сдвоенный для настройки двух каналов одновременно), последовательно с ограничивающим минимальное значение сопротивления резистором (скажем 4К7). Кроме того, в некоторых случаях можно попробовать фильтр второго порядка, поставив конденсатор в 100-220 нФ параллельно R27, подобрав его по отсутствию выброса на АЧХ в области инфранизких частот или по хорошей форме меандра на 20-30 Гц. Вообще настроить серво не так просто, поскольку это должна быть последняя "точная" настройка на слух, после того, как правильно выбраны основные параметры и компоненты блока питания, установлен оптимальный ток покоя выходного каскада и т.д. В некоторых случаях можно улучшить согласование конкретной пары "акустика-усилитель" путём регулировки серво. На усилителе мощности Creek A52SE настройка серво была выведена на переднюю панель как раз для этого.

В качестве р-канального транзистора можно использовать ещё ZVP2110 или 2120 - это будет получше, чем 9610. Может потребоваться подбор в небольших пределах R15 (150-330 Ом) для правильной температурной компенсации тока покоя. Если ток покоя с нагревом увеличивается, то сопротивление надо уменьшить. и наоборот. Лучше сделать небольшой отрицательный наклон, чтобы с прогревом теплоотвода ток покоя бы слегка уменьшался - процентов на 10-15 после работы на полной мощности в течение некоторого времени.

Из приведенных выше цитат можно почерпнуть для себя некоторые полезные моменты, необходимые для настройки усилителя.
Свой вариант усилителя я настраивал следующим образом:

  • Выкрутил в сторону наибольшего сопротивления регулировочные резисторы RP1, RP2.
  • Включил питание и проверил напряжения питания +/-32В на резисторах R36, R37.
  • Проверил по падению напряжения на резисторах R36 и R37 потребляемый усилителем ток.
  • Проверил питание +/-12В на операционном усилителе, выводы 4 и 8.
  • Проверил постоянное напряжение на выходе усилителя. Получил 2-3мВ.
  • Выставил на резисторе R28 падение напряжения, равное 1.1В, вращая подстроечный многооборотный резистор RP1.
  • Вращая подстроечный многооборотный резистор RP2, выставил на резисторе R36 падение напряжения, соответствующее току через него около 75мА, предварительно дав усилителю прогреться. Рассеиваемая мощность в режиме покоя у моего варианта усилителя получилась около 9Вт. Радиаторы, площадью 1000кв.см, нагревались немного выше температуры тела.
  • Подал на вход тестовый сигнал, установил нужный уровень громкости и провел измерения коэффициента гармоник, интермодуляционных искажений. Посмотрел реакцию усилителя на прямоугольный импульс и т.д.
  • Подключил акустическую систему, подал на вход сигнал с проигрывателя и послушал несколько любимых и знакомых композиций. Послушал тестовые композиции, музыку разных жанров. Получил море удовольствий и приятных впечатлений оттого, что усилитель заиграл просто замечательно :-)

Чуть позже я провел субъективное, на слух, сравнительное тестирование усилителя на N-канальных полевых транзисторах и усилителя на микросхеме LM3886. Усилитель на микросхеме, бесспорно, проиграл по качеству звука. Самые существенные впечатления от звука усилителя на N-канальных полевиках у меня такие: в звучании появилась хорошая глубина сцены, отчетливо слышны реверберации помещения, в котором делали запись, звук поражает своей детальностью, совсем не утомляет при прослушивании, даже на большой громкости остается мягким и прозрачным.

Фото собранного усилителя и подробно одного канала:

Собранный усилитель Печатная плата одного канала

  Фото печатной платы блока питания  
  Фото печатной платы усилителя  
  Фото блока питания  
  Переделка держателя предохранителей  
Сайт создан в системе uCoz